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Abstract
We develop a supersymmetric field-theoretical description of the Gaussian
ensemble of the almost diagonal Hermitian random matrices. The matrices
have independent random entries Hi�j with parametrically small off-diagonal
elements Hij/Hii ∼ B � 1. We derive a regular virial expansion of correlation
functions in the number of ‘interacting’ supermatrices associated with different
sites in the real space and demonstrate that the perturbation theory constructed
in this way is controlled by a small parameter B. The general form of the
integral expression for the mth virial coefficient governed by the ‘interaction’
of m supermatrices is presented and calculated explicitly in the cases of 2- and
3-matrix ‘interaction’. The suggested technique allows us to calculate both
the spectral correlations and the correlations of the eigenfunctions taken at
different energies and in different space points.

PACS numbers: 02.10.Yn, 71.23.An, 71.30.+h, 71.23.−k

1. Introduction

1.1. Conventional and unconventional random matrix theories

The random matrix theory (RMT) is a very useful mathematical formalism which allows us
to describe universal properties of complex quantum systems. Let us consider an ensemble
of N × N Hermitian matrices, whose elements are independent Gaussian-distributed random
variables with a zero mean value and a position dependent variance:

〈Hij 〉 = 0; 〈
H 2

ii

〉 = 1

β
, 〈|Hi �=j |2〉 = 1

2
B2F(|i − j |). (1)

Here 〈· · ·〉 denotes averaging over different realizations of RMs; the parameter β corresponds
to the Wigner–Dyson symmetry classes: β = 1 for the Gaussian orthogonal ensemble (real
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matrices) and β = 2 for the Gaussian unitary ensemble (complex matrices). The function F
and the parameterB determine various universality classes sharing the same global symmetries.

A special case of the constant variance of the off-diagonal elements B2F(|i − j |) = 1
corresponds to the archetypal Wigner–Dyson RMT [1]. It has a great number of applications
starting from nuclear physics to quantum chaos to mesoscopic physics [2, 3]. Ergodic
wavefunctions and a level repulsion are essential features of the Wigner–Dyson RMT.

Recently, unconventional RMTs characterized by decreasing function F have attracted
a substantial interest (see, for instance, detailed introductions in [4–6]). This interest is
stimulated, in particular, by a possibility of exploring the properties of localized and critical
disordered systems. For example, if the off-diagonal matrix elements are essentially non-
zero only inside a band centred at the main diagonal and decay exponentially fast to zero
outside the band, all eigenfunctions are exponentially localized. This banded RMT describes
the physics of a quasi-one-dimensional disordered wire [7]. If F decays only as a power-
law outside the band [8], F ∼ 1/|i − j |2α , the eigenfunctions are power-law localized for
α > 1. The Wigner–Dyson universality class is approached for α → 0. Thus, the power-law-
banded RMT (PLBRM) can interpolate between the Wigner–Dyson statistics and the Poisson
statistics of localized system. The special case α = 1 corresponds to a critical behaviour
similar to that found at the point of the Anderson metal–insulator transition [8–10]. The
function Fcrit for the one-parametric family of the critical PLBRM can be defined as follows:
Fcrit(|i−j |) = 1/(B2 +(i−j)2). The eigenfunctions of this critical model remain multifractal
at any B ranging from the weak multifractality at the large bandwidth B � 1 to the strong
multifractality for the almost diagonal RMT B � 1.

1.2. From large to small bandwidth RMT: σ -model versus virial expansion

The considerable progress in the banded and the power-law-banded RMT has become possible
due to the mapping [7, 8] onto the nonlinear supersymmetric σ -model [11], which is a
powerful filed-theoretical description of various averaged correlation functions. However,
such a mapping is only justified in the large bandwidth limit. This limitation comes from
the saddle-point approximation which is a crucial step in the derivation of the σ -model.
Physically, it corresponds to the diffusive approximation which implies in particular that the
smooth envelope of a typical eigenfunction changes slowly on the scale of the mean free path.
This approximation fails in the opposite limit of the small bandwidth, including the case of
the almost diagonal RMTs where the bandwidth shrinks to zero and the off-diagonal matrix
elements are assumed to be parametrically smaller than the diagonal ones, B � 1.

Let us represent the almost diagonal matrix as a sum of the diagonal part and a matrix of
the small off-diagonal elements Ĥ = Ĥd +V̂ , V ∼ B � 1. The diagonal matrix Ĥd represents
‘non-interacting’ energy levels or localized eigenstates. The presence of the small off-diagonal
matrix V̂ leads to a weak ‘interaction’ between different localized states. In order to calculate
correlation functions, one can perform an expansion in the number of interacting localized
states [12]. The small parameter B is the control parameter of this procedure. This method
was called [4–6] ‘a virial expansion’ (VE) by analogy with the expansion of thermodynamic
functions of a dilute system in powers of density with the mth virial coefficient being governed
by collisions of m + 1 particles.

These ideas were initially implemented in a semi-empirical real-space renormalization
group approach which has been applied for critical systems with long-range interactions [12]
and for a quantum Kepler problem [13]. The real-space renormalization group was also used
to study the critical almost diagonal PLBRM [9]: the spectral correlations and the scaling
properties of the eigenfunctions were investigated by considering a resonant interaction of two
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energy levels. The renormalization group approach has however two serious disadvantages:
(i) it does not allow for a rigorous control of omitted contributions; (ii) due to technical
difficulties, it is almost impossible to go beyond the leading term, thus the resonant interaction
of three and more levels remains inaccessible in this framework.

A rigorous counterpart of the renormalization group approach has been suggested in
recent works [4–6]. It deals with a regular VE generated with the help of the Trotter formula
(TVE) [14]. Based on the classification of perturbation series by a number of the interacting
levels involved, TVE allows one to study the density of states and spectral correlations of
the almost diagonal RMTs. The accuracy of the TVE is always controllable resulting in the
rigorous perturbation theory. The second disadvantage of the renormalization group has been
also partly overcome: the TVE allows us to go beyond the leading term by considering the
interaction of two and three levels. In this way the first and the second virial coefficients
have been calculated for a generic model of the almost diagonal RMTs. The general formulae
have been applied [4–6] to the different models of almost diagonal RMTs, including critical
PLBRMs [8], the unitary Moshe–Neuberger–Shapiro model [15] and the Rosenzweig–Porter
model [16] in the regime of crossover.

The TVE involves a complicated combinatorial part of intermediate calculations. The
combinatorial problem appeared there resembles a colouring problem of closed graph edges.
If one considers the density of states [5], the colouring is similar to the well-studied problem
of the graph theory [17] whose solution is known [18]. However, a study of spectral
correlations requires to resolve much more complicated problem of simultaneous colouring
of several graphs [4]. A complexity of the combinatorial calculations grows tremendously
with increasing the number of the interacting energy levels. Therefore, the TVE can be used
practically only for the calculation of the first and the second virial coefficients.

1.3. Virial expansion from the field-theoretical representation

In the present work, we formulate a supersymmetric field-theoretical representation for the VE
of different correlation functions of the generic model (1). The method of the supersymmetry
allows us to perform an averaging over RM ensemble for an arbitrary function F(|i − j |).
The supersymmetric VE is controlled by a small parameter B � 1. The virial coefficients are
straightforwardly derived in a general form in terms of the integrals over supermatrices. It is
important that no combinatorics appear in the intermediate field-theoretical calculations. In
this framework, the interaction of m energy levels is described by an integral containing only
m independent supermatrices associated with m different sites in the real space. In order to
calculate the integrals over supermatrices explicitly we employ a parameterization introduced
recently in [20].

The suggested supersymmetric field theory (SuSyFT) can be equally applied both to the
spectral correlations and to the correlations of the eigenfunctions taken at different energies
and in different space points. We emphasize that this approach is the unique analytic tool to
describe the wavefunctions correlations for the almost diagonal RMTs. Neither the real-space
renormalization group nor the TVE are capable to do this. We would also like to mention
that SuSyFT might be useful for non-perturbative calculations as well, however this issue is
beyond the scope of the present work.

The paper is organized as follows: we present the SuSyFT and give main definitions
in section 2. The basic ideas and parameters of the VE are explained in section 3 with a
reference to SuSyFT. A general integral expression for mth virial coefficient governed by
the interaction of m supermatrices is presented in section 4. In this section, we also discuss
in detail the validity of a saddle-point integration over massive degrees of freedom and the
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applicability of the VE. We exemplify the integral calculations for the cases of 2- and 3-matrix
interaction in section 5 and discuss advantages of the method and possible further applications
in conclusions.

2. Main definitions

Let us introduce the retarded and advanced Green’s functions

ĜR/A(E) = 1

E − Ĥ ± ı0
; (2)

Ĥ is a Hermitian RM of large size N � 1. It has independent matrix elements and belongs
to the Gaussian ensemble described by equation (1). Without loss of generality, we consider
the case of GUE, β = 2. A generalization to other symmetry classes is straightforward. The
Green’s functions are an efficient tool to study different correlation functions. For example,
the expression for the averaged density of states in terms of the Green’s functions reads

〈ρ(E)〉 = 1

N

N∑
n=1

〈δ(E − εn)〉 = 1

πN
Im〈Tr(ĜA(E))〉, (3)

where εn are eigenvalues of the random matrix Ĥ and 〈· · ·〉 denotes averaging over the
ensemble of random matrices. The inverse density of states taken at the band centre E = 0
governs the mean level spacing of RMT: � = 1/N〈ρ(0)〉. The mean level spacing of almost
diagonal unitary RMT is [5]

�|B�1 � (
√

π + O(B2))N−1.

The two-point correlation functions can be expressed by means of the quantity Gpq(ω):

Gpq(ω) ≡ 1

�

∫ ∞

−∞
dEĜR

pp(E + ω/2)ĜA
qq(E − ω/2). (4)

For example, the expressions for the averaged two-level correlation function

R2(ω) ≡ N�

∫ ∞

−∞
dE〈〈ρ(E + ω/2)ρ(E − ω/2)〉〉 (5)

is given by

R2(ω) = �2

2π2N
Re

N∑
p,q=1

〈〈Gpq(ω)〉〉, (6)

where 〈〈ab〉〉 ≡ 〈ab〉 − 〈a〉〈b〉; while the averaged correlator of two eigenfunctions taken at
different energies at different space points p and q

C2(ω, p, q) ≡ �

∫ ∞

−∞
dE

〈〈
N∑

m,n=1

δ(E + ω/2 − εn)δ(E − ω/2 − εm)
∣∣ψεn

(p)
∣∣2∣∣ψεm

(q)
∣∣2

〉〉

(7)

reads

C2(ω, p, q) = �2

2π2N
Re〈〈Gpq(ω)〉〉. (8)

Thus, we have to calculate 〈〈Gpq(ω)〉〉 to explore the two-point correlation functions. The
ensemble averaging can be performed with the help of SuSyFT [11, 19]. To this end, we
introduce N supervectors

�(α) =
(

�R(α)

�A(α)

)
; α = 1, 2, . . . , N. (9)
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Here, �R/A(α) = (sR/A(α), χR/A(α))T are supervectors in retarded-advanced sectors. They
consist of commuting sR/A(α) and anticommuting Grassmann variables χR/A(α). The direct
product of �(α)-vectors with the conjugated vectors constitutes NQ-matrices of the size 4×4.
The block structure of the Q-matrices in the retarded-advanced notation is

Qα ≡ �(α) ⊗ �̄(α) =
(

�R(α) ⊗ (�R(α))† �R(α) ⊗ K(�A(α))†

�A(α) ⊗ (�R(α))† �A(α) ⊗ K(�A(α))†

)
,

K ≡
(−1 0

0 1

)
.

(10)

The ensemble averaged Gpq can be written as follows:

〈Gpq(ω)〉 = (−1)N+1

�

∫ ∞

−∞
dE

∫
D{Q}RpAq

(
N∏

α=1

eS0[Qα]

)
 N∏

n�=m

eSp[Qn,Qm]


 , (11)

where D{Q} ≡ ∏N
α=1 D{Qα} is the measure of integration over the supermatrices Qα (see

appendix A for the details)3. The factors Rp and Aq break the supersymmetry between the
commuting and anticommuting variables in the retarded/advanced sectors:

Rp = (χR(p))∗χR(p), Aq = (χA(q))∗χA(q). (12)

In equation (11) we have separated out two parts of the action: S0 corresponds to the diagonal
part of RM and depends on a single supermatrix

S0[Qα] = Str

{
−aQ2

α + ı

(
E +



2
�

)
Qα

}
, � ≡

(
1 0
0 −1

)
RA

, (13)

a ≡ 1

2

〈
H 2

αα

〉 = 1

4
,  ≡ ω + ı0. (14)

The second part of the action Sp is proportional to the variance of the off-diagonal elements
and contains a product of two supermatrices

Sp[Qk,Qm] = −bkmStr{QkQm}, k �= m, (15)

bkm ≡ 1
2 〈|Hkm|2〉 = 1

4B
2F(|k − m|). (16)

In other words, Sp describes an interaction of different Q-matrices. Note that equations (11),
(13)–(16) are exact. We have used Q-matrices to compactify the notation but we could equally
write the expression for 〈Gpq(ω)〉 in terms of the integrals over �-vectors.

The standard σ -model derivation includes (i) introducing auxiliary supermatrices Q(σ)
α

that allow us to decouple the quartic in �α (i.e., quadratic in Qα) terms by the Hubbard–
Stratonovich transformation; (ii) Gaussian integration over the supervectors �α . After these
two steps, one has to employ the saddle-point approximation for the integrals over Q(σ)

α . As
we have already discussed in the introduction, this procedure is justified only for the large
band width RMT, B � 1. Here in contrast we will consider the case

B � 1, (17)

3 Note that we have transformed the action written in terms of the supervectors � with four commuting and
four anticommuting variable to the action written in terms of the supermatrices Q with three commuting and four
anticommuting variable. One phase of the commuting variables has been integrated out since the direct product
(10) does not depend on it. This is possible for RMTs with uncorrelated matrix elements having zero mean value,
cf equation (1).
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where the standard σ -model fails. Therefore instead of the Hubbard–Stratonovich
transformation with further standard steps, we will use the method of the virial expansion and
employ a parameterization of the Q-matrices suggested in [20]. Details of the parameterization
are given in appendix A. We emphasize that integration manifolds of the σ -model and of the
VE are quite different: it is given by U(1,1)

U(1)×U(1)
× U(2)

U(1)×U(1)
for the former and by U(1,1)

U(1)×U(1)
×R

for the latter [20]. In particular, a saddle-point approximation in the SuSyFT suggested will
lead to the linear constraint Str(Q) = 0 for a large-scale theory (see section 4) whereas the
saddle-point manifold of the standard diffusive σ -model requires the additional nonlinear
constraint (Q(σ))2 = 1. Note however that the nonlinearity of SuSyFT follows already from
the definition of the matrix Q ≡ � ⊗ �̄.

3. Basic concept of the virial expansion

The two-fold product of exponentials in equation (11) can be expanded in power series
 N∏

n�=m

eSp[Qn,Qm]


 =

∞∑
k=0

1

k!

(
N∑

m>n=1

(−2bm,nStr[QmQn])

)k

≡ VD +
∞∑

m=2

V(m); VD = 1.

(18)

We have rearranged this series by separating out terms V(m) which contain a given number
m � 2 of different Q-matrices. It is easy to show that

V(2) =
N∑

α1>α2=1

V(2)
α1α2

, V(2)
α1α2

≡ e−2bα1α2 Str[Qα1 Qα2 ] − 1, (19)

V(3) =
N∑

α1>α2>α3=1

V(3)
α1α2α3

,

V(3)
α1α2α3

≡ V(2)
α1α2

V(2)
α1α3

V(2)
α2α3

+ V(2)
α1α2

V(2)
α1α3

+ V(2)
α1α2

V(2)
α2α3

+ V(2)
α1α3

V(2)
α2α3

,

(20)

and so on for the higher terms. The function V(2)
α1α2

in VE is a counterpart of the Mayer’s
function used in the theory of imperfect gases [21].

This expansion can now be substituted into the expression for 〈Gpq(ω)〉:

〈Gpq(ω)〉 = (−1)N+1

�

∫ ∞

−∞
dE

∫
D{Q}RpAq

(
N∏

α=1

eS0[Qα]

)
(VD + V(2) + V(3) + · · ·). (21)

The first term VD = 1 corresponds to the diagonal RMT with non-interacting localized
eigenstates. This is the starting point for VE. The wavefunctions of the diagonal RMs are
completely localized at different sites having no overlap with the other sites and the energy
levels are uncorrelated:〈〈
GD

p �=q

〉〉 = 0, (22)

〈〈
GD

pp

〉〉 = π

�

(
2ı


− e− ω2

2

∫
dE e−2E2

(
erfi

[
E +

ω

2

]
− ı

) (
erfi

[
E − ω

2

]
+ ı

))
; (23)

RD
2

∣∣
N→∞ = Re

(
�2

2π2

〈〈
GD

pp(ω)
〉〉) = �(δ(ω) + O(1)) = δ(s) + O(1/N);

s ≡ ω

�
, erfi(z) ≡ 2√

π

∫ z

0
et2

dt.

(24)
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QmQk

bkm

...1k k m m+1

b     = 0km
QmQk

(a)

m m+1...

bpm

... ...

QmQk

bkm

Qpbkp

(c)

m m+1

(b)

Figure 1. Scheme of the SuSyFT virial expansion: (a) supermatrices with different indices
(associated with different sites in the real space) do not interact with each other in the case of the
diagonal RMT possessing the localized wavefunctions; (b) pair interaction of the supermatrices
via (small) off-diagonal elements of RMs, which governs the first virial coefficient Ḡ(2), see
equations (40) and (41); (c) the interaction of three supermatrices, which governs the second virial
coefficient Ḡ(3), see equations (40) and (41).

This is reflected by the structure of the first term: the Q-matrices are decoupled and all
superintegrals factorize. We can say that the matrix Qα is associated with the site α and
the supermatrices at different sites do not interact with each other if we put Sp = 0 (see
figure 1(a)).

Each term V(m) is the sum of the exponentials containing m supermatrices. The
supermatrices are linked by the small off-diagonal elements of RMs (see figures 1(b) and
(c)). We refer to these links as ‘the interaction of the supermatrices’. Obviously, they reflect
the interaction between the localized eigenstates of the diagonal part of RMT.

Let us discuss general properties of the summands V(m)
{α} , {α} ≡ α1, α2, . . . , αm. The set

{α} must include external indices (p �= q and p = q in the off-diagonal case and in the
diagonal one, respectively); otherwise the contribution V(m)

{α} is cancelled by subtracting the
decoupled term, see the definition of 〈〈· · ·〉〉. The N − m supermatrices, whose indices do not
belong to the set {α}, are included neither in V(m) nor in the symmetry breaking factor RpAq

and, thus, are containing only in ‘non-interacting’ part of the action S0. The integrals over
these supermatrices are equal to unity due to the supersymmetry.

Let us introduce several definitions. We will call supermatrices Qβ1 and Qβ2 entering into
the expression for V(m)

{α} connected, if and only if there is a sequence of indices {γ1, . . . , γn}
such that all elements bβ1γ1 , bγ1γ2 , . . . , bγn−1γn

, bγnβ2 are contained in V(m)
{α} . We refer to (i) a

subset {α′} ⊂ {α} as to connected subset if all independent matrices Q{α′} are connected to
each other; (ii) two non-intersecting subsets {α(1)} ⊂ {α}, {α(2)} ⊂ {α}, {α(1)}⋂{α(2)} = ∅
as to disconnected subsets if none of the matrix of the first subset Q{α(1)} is connected to
any matrix of the second one Q{α(2)}. If one or two external indices belong to a connected
subset (p ∈ {α′} or q ∈ {α′} or p, q ∈ {α′}) then all matrices of this subset are connected to
the supermatrices with external indices. These connections break the supersymmetry for all
supermatrices Q{α′}.
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If m = 2, 3 then there are no disconnected subsets: all matrices entering V(m)
{α} are

connected to each other and hence all of them are connected to the supermatrices with external
indices and the supersymmetry is broken for all of them.

Starting from m � 4, the disconnected subsets may appear and there are V(m)
{α} containing

supermatrices, which are not connected to any supermatrix with an external index. These are
counterparts of the vacuum diagrams in the standard interaction representation [22] and they
do not contribute to the correlation functions. For example, (i) if {α(1,2)} are two disconnected
subsets and p, q ∈ {α(1)} then the supersymmetry is unbroken for all matrices {Q{α(2)}},
the integrals over the supermatrices with unbroken supersymmetry yield trivial boundary
contributions governed by Q{α(2)} = 0 and the corresponding Mayer’s functions are zero; (ii) if
{α(1,2)} are two disconnected subsets, p �= q and p ∈ {α(1)}, q ∈ {α(2)} then the contribution
V(m)

{α} is cancelled by subtracting the decoupled term (see the definition of 〈〈· · ·〉〉).
To summarize the above discussion, each term V(m) effectively consists only of irreducible

parts where there are no disconnected matrices. The supersymmetry is broken for all
m matrices (i) by the factor RA for the supermatrices Qp,q and (ii) by the inter-matrix
links for the rest supermatrices. To formulate the VE, we focus just on these supermatrices
Qα1 ,Qα2 , . . . ,Qαm

with broken supersymmetry. Let us scale them by the constant4 B:

Q̃αj
= BQαj

, 1 � j � m. (25)

After this scaling, the small parameter B is eliminated from V(m) but appears in the single-
matrix part S0 in three different ratios as 1/B2, E/B and /B:

S0

[
Q̃αj

B

]
= Str

{
− 1

4B2
Q̃2

αj
+ ı

(
E

B
+



B
�

2

)
Q̃αj

}
. (26)

The first ratio is large, 1/B2 � 1, and, therefore, the exponentials

exp

{
S0

[
Q̃αj

B

]}
∝ exp

{
− 1

4B2
Str

[
Q̃2

αj

]}

suppress the volume of integration over Q̃αj
by constraint Str

[
Q̃2

αj

]
< B2. We can draw

a conclusion that the larger the number m of independent Q-matrices the smaller is the
contribution G(m)

pq of m-matrix term V(m) to the correlation function. This statement would be
unquestionable if one integrates only over commuting variables. In the case of superintegrals
it is more subtle and requires an additional discussion. An obvious counterexample to
our estimate is the case of a partition function, for which the supersymmetry is unbroken,
R = A = 1, and all superintegrals yield unity regardless of the apparent small phase volume
of the integration. This happens due to the anomalous contributions [11] to the superintegrals.
The irreducible terms V(m)

{α} can also contain the anomalous parts. The detailed analysis of the
correlation function (see section 5.3) shows however that, due to the broken supersymmetry,
the latter anomalies do not change the powers of the small parameter B and the following
estimate holds true:

G(m+1)
pq

G(m)
pq

∝ B, m � 2. (27)

4 This scaling helps to single out two different parameters of the problem: the small parameter B � 1 and an
arbitrary ratio /B. To this end we can scale by the constant either all variables of �-vectors, equation (9), or only
variables λR,A of Q-matrices parameterized in accordance with appendix A. In both cases the integration measure
is invariant due to the equal number of commuting and anticommuting variables in the former case and due to
formula (A.7) in the latter one.
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This justifies the supersymmetric virial expansion for the almost diagonal RMT: the expansion
of the correlation function in the number of the interacting supermatrices, equation (21),
yields a regular perturbation theory in powers of B.

4. General expression for the virial coefficients

4.1. Saddle-point integration

Before presenting an expression for the arbitrary number of the interacting matrices, let
us analyse the 2-matrix term

〈〈
G(2)

pq

〉〉
in more detail. As we have already mentioned the

supermatrices contained in V(2) must be coupled to the factors Rp and Ap,q . Therefore, we
obtain the following expression for the off-diagonal p �= q and the diagonal p = q parts of〈〈
G(2)

pq

〉〉
:

〈〈
G(2)

p �=q

〉〉 = −2π

�

〈
δ(Str[Qp + Qq])RpAqV(2)

pq

〉
Qp,Qq

, (28)

〈〈
G(2)

pp

〉〉 = −2π

�

N∑
n=1,n�=p

〈
δ(Str[Qp + Qn])RpApV(2)

pn

〉
Qp,Qn

. (29)

We have introduced the averaging over the supermatrices:

〈· · ·〉Qα
≡

∫
D{Qα}(· · ·) eS̃0[Qα ]; S̃0[Qα] ≡ S0[Qα]

∣∣
E=0 = −Str

[
Q2

α

]
4

+ ı


2
Str[�Qα].

(30)

The δ-function in equations (28) and (29) resulted from the integral over E, see equations (13)
and (21).

Formulae for G(2)
pq exactly describe the contribution of the two-level interaction to

the correlation function Gpq . However, V(2) contains a product of two supermatrices, cf
equation (19), which entangles the integration variables in a nontrivial way (see
equation (A.10)). We will calculate the integral over the variables Rα (see equation (A.8)) in
the saddle-point approximation. To explain this step, it is convenient to scale the supermatrices
by

√
bpα

Q̄p = √
bpαQp, Q̄α = √

bpαQα;
consider the integration over the scaled variables R̄α and S̄α in equations (28) and (29) and
perform the approximate integration over R̄:

∫ ∫ ∞

−∞
dR̄p,α

∫ ∫ ∞

|R̄p,α |
dS̄p,αδ

(
R̄p + R̄α√

bpα

)
Rp e− R̄2

p

4bpα

S̄2
p − R̄2

p

Aα e− R̄2
α

4bpα

S̄2
α − R̄2

α

e
ı
2

√
bpα

(S̄p+S̄α)
V(2)

p,α(R̄, S̄)

�
√

2πbpα

(∫ ∫ ∞

0

dS̄p,α

S̄2
pS̄2

α

RpAα

∣∣∣∣
R̄=0

e
ı
2

√
bpα

(S̄p+S̄α)
V(2)

p,α(0, S̄) + O(
√

bpα) + O

(
R̄t

S̄t

))
;

R̄α = Str[Q̄α], S̄α = Str[�Q̄α]. (31)

Here α = n, p for the diagonal- and off-diagonal parts ofG(2), respectively. We have accounted
for the δ-function in equations (28) and (29) and denoted the typical values of S̄ and R̄, at
which the integrals converge, by S̄t and R̄t accordingly. The value of R̄t is fixed by the
Gaussian exponentials in equation (31): R̄t ∼ √

bpα . The integrals over S̄ converge due to
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the exponentials e
ı
2

√
bpα

S̄p,α

, cf detailed calculations in section 5. Therefore, we can estimate
the second characteristic scale as5 S̄t ∼ √

bpα/ω and obtain R̄t /S̄t ∼ ω. The saddle-point
integration over R̄ makes sense only if the corrections in the right-hand part of equation (31)
are small6:

max

{√
bpα,

R̄t

S̄t

}
∼ max{√bpα, ω} � 1. (32)

Thus, we have to restrict ourselves to the region ω � 1 where the density of states of the
almost diagonal RMTs is close to the constant [5]. The ultrahigh frequencies ω � 1 cannot
be considered within the saddle-point integration over R and they are beyond the scope of the
present paper. We can return to the unscaled matrices Q and arrive at the following equation
for G(2): 〈〈

G(2)
p �=q

〉〉 = − (2π)3/2

�

〈
δ(Str[Qp])δ(Str[Qq])RpAqV(2)

pq

〉
Qp,Qq

+ δG(2)
p �=q, (33)

〈〈
G(2)

pp

〉〉 = − (2π)3/2

�

N∑
n�=p

〈
δ(Str[Qp])δ(Str[Qn])RpApV(2)

pn

〉
Qp,Qn

+ δG(2)
pp . (34)

To calculate the leading terms, we have effectively replaced the exponentials exp(−R2/4) in
the integrand of (28)–(30) by the δ-functions of R:

exp
(− 1

4 Str
[
Q2

p + Q2
α

])
δ(Str[Qp + Qα]) = exp

(− 1
4

(
R2

p + R2
α

))
δ(Rp + Rα)

→
√

2πδ(Rα)δ(Rp) =
√

2πδ(Str[Qα])δ(Str[Qp]). (35)

Equations (31) and (32) implies in the case of the off-diagonal correlation function:

δG(2)
p �=q

G(2)
p �=q

∼ max{B
√
F(|p − q|), ω}. (36)

A similar estimate for the diagonal correlation function is more subtle since the derivation
of G(2)

pp involves the summation over the auxiliary index n. Let us assume that this sum in
the leading part of G(2)

pp as well as in the correction δG(2)
pp converges at a characteristic scale

|n − p| ∼ Xc, then we can expect that

δG(2)
pp

G(2)
pp

∼ max{B
√
F(Xc), ω}. (37)

The value of Xc is, of course, model dependent and varies for different RMTs.
The generalization of equations (33) and (34) for an arbitrary number m of the interacting

Q-matrices reads

〈〈
G(m)

p �=q

〉〉 � 2π

�

(−2
√

π)m−1

√
m

N∑
{αj �=p,q}

〈
δ(Str[Qp])δ(Str[Qq])RpAq

×
(∏

j

δ
(
Str

[
Qαj

]))
V(m)

pqα1α2...αm−2

〉
Qp,QqQα1 Qα2 ...Qαm−2

1 � j � m − 2; (38)

5 This is obvious if one deforms the integration contour for the S-variable from the real axis S ∈ [0, +∞] to the
imaginary one S ∈ [0, +ı∞].
6 Small corrections to the saddle-point integration in equation (31) have been obtained by a rough upper estimate.
More detailed analysis shows that they can be parametrically smaller. For example, the corrections O(

√
bpα) cancel

out in the leading term of the virial expansion for the level compressibility and only the smaller ones O(bpα)

remain. In such cases, validity of the saddle-point integration becomes even broader than the range described by
equation (32).
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〈〈
G(m)

pp

〉〉 � 2π

�

(−2
√

π)m−1

√
m

N∑
{αj �=p}

〈
δ(Str[Qp])RpAp

×
(∏

j

δ
(
Str

[
Qαj

]))
V(m)

pqα1α2...αm−1

〉
Qp,QqQα1 Qα2 ...Qαm−1

1 � j � m − 1. (39)

The summation is performed over ordered indices 1 � α1 < α2 < α3 < · · · � N excluding
the external fixed indices p and q. It is easy to show (see section 5.3) that these expressions
have the following functional dependence on parameters  and B:

〈〈G(m)〉〉 = Bm−2Ḡ(m)(/B), (40)

with function Ḡ(m) depending only on the ratio /B. Thus one can write VE of the correlation
function as a functional series in powers of B:

〈〈Gpq(B,/B)〉〉 � ḠD
pq +

∑
m�2

Bm−2Ḡ(m)
pq (/B). (41)

The functions Ḡ(m)
pq are the virial coefficients. Each coefficient Ḡ(m)(/B) is governed by the

interaction of m supermatrices corresponding to the interaction of m localized states. The first
term ḠD is related to uncorrelated statistics of the diagonal part of the almost diagonal RMTs.

By analogy with the estimates (36) and (37), equations (38) and (39) describe an arbitrary
virial coefficient Ḡ(m) with the following accuracy:

δG(m)
p �=q

G(m)
p �=q

∼ max{B
√
F(|p − q|), ω}, δG(m)

pp

G(m)
pp

∼ max{B
√
F(Xc), ω}. (42)

It is convenient to represent the corrections schematically as a sum of two terms:

δG(m)
pq = δωG(m)

pq + δBG(m)
pq

where δωG(m)
pq

/
G(m)

pq ∼ ω, δBG(m)
p �=q

/
G(m)

p �=q ∼ B
√
F(|p − q|) and δBG(m)

pp

/
G(m)

pp ∼ B
√
F(Xc).

4.2. Validity of the virial expansion and the large-scale limit

All details of the evaluation of G(2,3) are presented in the next section. Here, we would like to
discuss the validity and the applicability of VE (38)–(41).

Firstly we note that VE (41) is a functional series. Its successive terms decrease with
increasing the number of the interacting supermatrices only if the absolute value of the virial
coefficients is bounded for the arbitrary ratio /B. This condition determines a convergence
of VE but it cannot be checked until the RMT model is specified. In particular, this condition
is violated for RMTs with almost ergodic wavefunctions.

Secondly we should recall that, calculating Ḡ(m) (/B) by the saddle-point approximation
in R-variables, we have neglected corrections δωG(m)

pq which are of the order of O(ω). This
means that for a given ω the summation over m in VE described by equations (38)–(41) must
be stopped at

mmax ∼ 1 + log(ω)/log(B).

For instance, if B � ω � 1 then δωG(2) � G(3) and one may take into account only the
interaction of two supermatrices neglecting all higher terms. The next term of VE governed
by the interaction of three supermatrices may be taken into consideration only for the smaller
energy ω � B when δωG(2) � G(3), etc. On the other hand, the neglected dependence of the
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virial coefficients on ω often results from the energy dependence of the density of state and
does not influence universal properties of the correlation functions.

Finally let us compare δBG(m) with the successive term of VE G(m+1). For the sake of
simplicity we compare δBG(2)

p �=q with G(3)
p �=q though the same analysis applies to the diagonal

virial coefficients with p = q and for the arbitrary m. Without loss of generality we put
F(1) = 1. If |p − q| ∼ 1 then δBG(2)

p �=q

/
G(2)

p �=q ∼ B and there is no way to get the scale
separation: δBG(2) and G(3) are of the same order and, again, one may consider only the two
matrix interaction regardless of the energy smallness.

Now, we will show that δBG(2) is parametrically smaller than the higher terms of VE in the
large-scale limit. The large-scale limit means that we consider only those correlation functions
which are not sensitive to the details of F at small distances and governed by the behaviour of
this function at large distances Xc, at which F is sufficiently small F(Xc) � 1. It means, in
particular, that we assume: (i) |p − q| � Xc in the case of G(2)

p �=q ; (ii) the main contribution to
the sum over the auxiliary index α1 originates from |α1 − p| � Xc and |α1 − q| � Xc in the
case of G(3)

p �=q . We recall that the sum over α1 is due to presence of the third supermatrix, see
equation (38). Although the second assumption is not applicable for arbitrary function F , it
allows us to study a wide class of almost diagonal RMTs. We arrive at the following estimate
in the framework of the large-scale limit:

δBG(2)
p �=q

G(2)
p �=q

∼ BF(|p − q|) � BF(Xc) � B.

The ratio G(3)
p �=q

/
G(2)

p �=q requires a separate consideration: the presence of the third supermatrix

in the expression for G(3)
p �=q results in the additional factors B

√
F(|p − α1|) or B

√
F(|q − α|)

and simultaneously requires an additional summation over the index α1, see detailed
calculations in section 5.2. This summation is crucial: we have assumed that it converges
at |p − m| ∼ |q − m| ∼ Xc, but the large phase volume of summation can compensate the
smallness of

√
F(Xc), cf [6]. If this is the case we obtain

G(3)
p �=q

G(2)
p �=q

∼ B ⇒ δBG(2)
p �=q

G(3)
p �=q

∼
√
F(Xc) � 1.

Thus, if the assumptions of the large-scale limit hold true then δBG(2)
p �=q is parametrically smaller

than the next term of the virial expansion. In particular if the characteristic scale Xc depends
on N and the function F decreases in such a way that limN→∞

√
F(Xc) = 0 then the ratio

δBG(2)
p �=q

/
G(2,3)

p �=q asymptotically goes to zero. This scale separation justifies VE in the large-scale
limit in many cases. One can check, for example, that it is correct for the spectral statistics of
the critical almost diagonal PLBRMs, where Xc ∝ BN and the relevant energy range reads
ω � B� [4].

We would like to mention that the large-scale limit considered here is analogous to the
diffusive approximation of the standard σ -model. In the latter approximation, the spatial
scales large compared to the mean free path are assumed to be the only relevant ones. In the
same time, the saddle-point approximation justified in the large-scale limit in our approach
results in the linear constraint on the Q-matrix

Str[Q] = 0, (43)

while the saddle-point manifold of the standard diffusive σ -model is defined by the additional
nonlinear constraint (Q(σ))2 = 1.
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4.3. Correlation function at the band centre

The expressions for the correlation functions given by equations (38) and (39) were derived
after integration over E. However in some applications it is more convenient to consider a
correlation function at a fixed energy. The aim of this section is to briefly discuss the correlation
functions at the band centre E = 0.

We define the two-point correlation function at the band centre as

Ḡpq(ω,E = 0) ≡ ĜR
pp(ω/2)ĜA

qq(−ω/2). (44)

Repeating all the steps leading to the results equation (38), (39), we obtain

〈〈
Ḡ(m)

pq (ω,E = 0)
〉〉 �

√
m

N

〈〈
G(m)

pq (ω)
〉〉
. (45)

The ratio
√

m/N can be referred to as ‘the unfolding factor’7.
Let us also note that an average of the product of two retarded (advanced) Green’s

functions can be neglected again for the following reason. If we look at the parameterization
of Q in this case (appendix B), then we note that variables R and S change their roles. For this
reason the large-scale approximation Str[Q] ≈ 0 implies now λR, λR′ ≈ 0. Thus, the volume
of the integration in this case becomes parametrically small at B � 1 and ω � 1.

Below, we will analyse only the correlation functions averaged over E.

5. The cases of 2- and 3-matrix approximation

In this section, we present detailed calculation of the contributions G(2) and G(3) governed
by the interaction of two and three supermatrices, respectively. It is more convenient to
expand V(2,3) in the series of powers of Q-matrices and then integrate over Q term by term.
This step is not essential for the approximation of two interacting matrices which can be
worked out directly from equations (33) and (34). However, it is more convenient for the
3-matrix approximation, since it allows one to unify the calculations for the different number
of the interacting supermatrices and to avoid an explicit derivation of anomalous terms in
the superintegrals. The disadvantage of this route is that the series obtained converge only
asymptotically and one has to Fourier transform them in order to analyse the answer in the
time domain [4].

5.1. The case of two interacting supermatrices

We start with calculating G(2) using approximate formulae (33) and (34). The power series for
V(2) reads

V(2)
pn =

∞∑
k=1

(−2bpnStr[QpQn])k

k!
. (46)

We use the phase φ and two non-compact variables R and S to parameterize the boson–boson
sector of each supermatrix (see the corresponding definitions in appendix A). The integration
measure in equations (33) and (34) takes the form∫

D{Q}δ(Str[Q])(· · ·) → 2
∫ ∞

−∞
dR δ(R)

∫ ∞

0

dS

S2

1

2π

∫ 2π

0
dφ

∫
d{η∗

RηRη∗
AηA}(· · ·) (47)

7 Note that the unfolding factor
√

2 has been calculated in [4] for the level compressibility in the case m = 2 and it
agrees with equation (45). However in the subsequent paper [6] the same unfolding factor has been erroneously used
for m = 3. The correct unfolding factor is

√
3, cf equation (45).
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and the expressions for RpAq,p read

RpAq |Rp,q=0 = 1
4SpSq(η

∗
RηR)p(η∗

AηA)q; (48)

RpAp|Rp=0 = 1
4S2

p(η∗
RηRη∗

AηA)p. (49)

Integrating over R-variables we obtain

〈〈
G(2)

p �=q

〉〉 � − (2π)3/2

�

∞∑
k=1

∫ ∫ ∞

0

dSp,q

SpSq

eı 
2 (Sp+Sq)

∫
d{η∗

RηRη∗
AηA}p,q

× (η∗
RηR)p(η∗

AηA)q

∫ ∫ 2π

0

dφp,q

(2π)2

(−2bpqSpq)
k

k!
, (50)

〈〈
G(2)

pp

〉〉 � − (2π)3/2

�

N∑
n�=p

∞∑
k=1

∫ ∫ ∞

0

dSp,n

S2
n

eı 
2 (Sp+Sn)

∫
d{η∗

RηRη∗
AηA}p,n

× (η∗
RηRη∗

AηA)p

∫ ∫ 2π

0

dφp,n

(2π)2

(−2bpnSpn)
k

k!
. (51)

The expression for Spq ≡ Str[QpQq]|Rp,q=0 ∝ SpSq is given in appendix D, equations (D.3)
and (D.5). The integrals of Sk

pq over the phases are calculated in the same appendix,
equations (D.2) and (D.4). The integrals over the S-variables are regularized at the upper
limit by the imaginary part of  and converge at the lower limit for all k in the case of G(2)

p �=q

and for k � 2 in the case of G(2)
pp . The term with k = 1 in the diagonal part G(2)

pp is special: it
is governed by an anomaly, i.e., an uncertainty 0 × ∞ with zero resulting from the integrals
over the Grassmann variables (η∗

RηRη∗
AηA)n and infinity due to the divergence at the lower

limit of integration over the commuting variable Sn. This uncertainty can be resolved either in
a standard way [11] or, equally, one can calculate the integrals in the diagonal part for k � 2
and then perform an analytic continuation for k = 1. The result of the integration over all
variables can be written as follows:

〈〈
G(2)

p �=q

〉〉 � (2π)3/2

�

∞∑
k=1

(
2bpq

2

)k
�(2k − 1)

�(k)
(k − 1), (52)

〈〈
G(2)

pp

〉〉 � (2π)3/2

�

N∑
n�=p

∞∑
k=1

(
2bpn

2

)k
�(2k − 1)

�(k)
k. (53)

The correlation functions R2 and C2 can be calculated from the real part of Gpq (see
equations (6) and (8)). Taking the real part by substituting ω instead of  in equations (52)
and (53) one obtains the asymptotic series in the energy representation. However, it is more
convenient to consider the time representation by performing the Fourier transform of the real
part

Gpq(t) = 1

2�

∫
dω e−ıωt (Gpq(ω) + c.c.),

obtaining

〈〈
G(2)

p �=q(t)
〉〉 � π(2π)3/2

�2|t |
∞∑

k=1

(−2bpqt
2)k

(k − 1)!

k − 1

2k − 1
, (54)
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〈〈
G(2)

pp (t)
〉〉 � π(2π)3/2

�2|t |
N∑

n�=p

∞∑
k=1

(−2bpnt
2)k

(k − 1)!

k

2k − 1
. (55)

Now the summation over k can be done explicitly

〈〈
G(2)

p �=q(t)
〉〉 � −

√
2
π5/2

�2

√
2bpq

[√
2bpq |t | e−2bpq t2 −

√
π

2
erf(

√
2bpq |t |)

]
, (56)

〈〈
G(2)

pp (t)
〉〉 � −

√
2
π5/2

�2

N∑
n�=p

√
2bpn

[√
2bpn|t | e−2bpnt

2
+

√
π

2
erf(

√
2bpn|t |)

]
. (57)

Here erf(z) = 2√
π

∫ z

0 e−t2
dt . Our theory can be verified by comparison with the results of

TVE. To this end we calculate the form factor, which is the Fourier transform of the two-level
correlation function R2:

K(t) = �2

2π2N
Re

N∑
p,q=1

〈〈Gpq(t)〉〉, (58)

and insert in this formula equations (56) and (57). This gives the form factor in the
approximation of two interacting levels:

K(2)(t) � −
√

2π

N |t |
N∑

p,q=1

x(|p − q|) e−x(|p−q|) �
∣∣∣∣
N�1

− 2

√
2π

|t |
N∑

m=1

x(m) e−x(m),

x(|p − q|) ≡ 2bpqt
2 = 1

2
(Bt)2F(|p − q|),

(59)

which coincides with the expression for K(2)(t) obtained by TVE [4].
This comparison of TVE and the theory based on SuSyFT clearly demonstrates that

SuSyFT is capable to give much more detailed information on the correlation functions.
Namely, TVE deals with the form factor which is an integral quantity obtained after the
summation of diagonal and off-diagonal parts of the correlation function G over all spatial
coordinates, while the correlation function G at given spatial points can be derived only from
SuSyFT.

We can now return from equations (56) and (57) written in the time domain to the energy
representation of Re[G(2)]:

Re
〈〈
G(2)

p �=q(ω)
〉〉 � − π3/2

√
2�

[
1 −

√
π

2
e− ω2

8bpq

(
ω√
2bpq

−
√

8bpq

ω

)
erfi

(
ω√
8bpq

)]
, (60)

Re
〈〈
G(2)

pp (ω)
〉〉 � − π3/2

√
2�

N∑
n�=p

[
1 −

√
π

2
e− ω2

8bpn

(
ω√
2bpn

+

√
8bpn

ω

)
erfi

(
ω√
8bpn

)]
. (61)

The power series equations (52) and (53) are asymptotic expansion of these formulae [23].
Note that the summands on the right-hand side of equation (61) are peaked around the value

ω√
8bpn

≡ ω

2B
√
F(|p − n|) ∼ 1, (62)

see figure 2. Thus, we can find the characteristic spatial scale Xc, which yields the main
contribution to the sum over n and determines G(2)

pp (s), from the following estimate:

F(Xc) ∼
(ω

B

)2
. (63)
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Figure 2. Summand in the right hand side of equation (61): f (y) = −[1−
√

π

2 e−y2
(2y+ 1

y
)erfi(y)].

Here the argument y denotes the parameter ω/
√

8bpn.

Estimate (63) ensures the validity of the large-scale limit for ω � B � 1 at the level of
two-matrix approximation. Indeed if ω � B then F(Xc) � 1, hence Xc � 1, i.e., the
diagonal correlator G(2)

pp is governed by the large distances, and the correction δBG(2) to the
saddle-point integration is expected to be smaller than the higher terms of the VE. In contrast,
in the range B � ω � 1 the characteristic scale is small, Xc → 1 and the higher terms of the
VE can be of the same order as the omitted correction δBG(2), see section 4.2. This means that
we cannot use the saddle-point integration to go beyond the two-matrix approximation in the
case B � ω � 1.

5.2. The case of three interacting supermatrices

The calculations of G(3) based on equations (38) and (39) are very similar to those described
in the preceding section for G(2). The power series for V(3) read

V(3)
pmn =




∞∑
k1,2,3=1

+
∞∑

k1,2=1

∣∣∣∣
k3=0

+
∞∑

k1,3=1

∣∣∣∣
k2=0

+
∞∑

k2,3=1

∣∣∣∣
k1=0




× (−2bpnStr[QpQn])k1

k1!

(−2bpmStr[QpQm])k2

k2!

(−2bmnStr[QmQn])k3

k3!
. (64)

We insert this series into equations (38) and (39) and integrate over R-variables obtaining

〈〈
G(3)

p �=q

〉〉 � (4π)2

√
3�

N∑
{m�=p,q}

∞∑
k1,2,3=0

∫ ∫ ∫ ∞

0

dSp,q,m

SpSqS2
m

eı 
2 (Sp+Sq+Sm)

∫
d{η∗

RηRη∗
AηA}p,q,m

× (η∗
RηR)p(η∗

AηA)q

∫ ∫ ∫ 2π

0

dφp,q,m

(2π)3

(−2bpqSpq)
k1

k1!

× (−2bpmSpm)k2

k2!

(−2bqmSqm)k3

k3!
, (65)
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〈〈
G(3)

pp

〉〉 � (4π)2

√
3�

N∑
{m,n�=p}

∞∑
k1,2,3=0

∫ ∫ ∫ ∞

0

dSp,m,n

S2
mS2

n

eı 
2 (Sp+Sm+Sn)

∫
d{η∗

RηRη∗
AηA}p,m,n

× (η∗
RηRη∗

AηA)p

∫ ∫ ∫ 2π

0

dφp,m,n

(2π)2

(−2bpqSpq)
k1

k1!

(−2bpmSpm)k2

k2!

× (−2bqmSqm)k3

k3!
; m > n. (66)

We use the same trick with the analytical continuation from kj � 2 to kj = 1 to handle
the anomalous terms. Note that we have put zero in the lower limit for the sum over
k1,2,3 and combined all four contribution in equation (64) together. This is possible since
all terms with either k1 = k2 = 0 or k1 = k3 = 0 or k2 = k3 = 0 are equal to zero
after the analytical continuation (see the results for G(3) below). The integrals over the
phases are calculated in appendix D, see equations (D.6)–(D.12). These rather cumbersome
expressions are substantially simplified after the integration over the Grassmann variables
(see appendix E):∫

d{η∗
RηRη∗

AηA}p,q,m(η∗
RηR)p(η∗

AηA)q

∫ ∫ ∫ 2π

0

dφp,q,m

(2π)3
(Spq)

k1(Spm)k2(Sqm)k3

=
∫

d{η∗
RηRη∗

AηA}p,q,m(η∗
RηRη∗

AηA)p

∫ ∫ ∫ 2π

0

dφp,q,m

(2π)3
(Spq)

k1(Spm)k2(Sqm)k3

= 1

32
�(k1, k2, k3)

Sk1+k2
p

�(k1 + k2 − 1)

Sk1+k3
q

�(k1 + k3 − 1)

Sk2+k3
m

�(k2 + k3 − 1)
; (67)

where

�(k1, k2, k3) = �(k1 − 1/2)

π1/2k1!

�(k2 − 1/2)

π1/2k2!

�(k3 − 1/2)

π1/2k3!
× (2k1k2k3 − k1k2 − k1k3 − k2k3)�(k1 + k2 + k3 − 1). (68)

After the integration over S-variables, the power series for G(3) take the following form:

〈〈
G(3)

p �=q

〉〉 � − ıπ2

4
√

3



�

N∑
{m�=p,q}

∞∑
k1,2,3=0

(
8bpq

2

)k1
(

8bpm

2

)k2
(

8bqm

2

)k3

×�(k1, k2, k3)(k1 + k2 − 1)(k1 + k3 − 1), (69)

〈〈
G(3)

pp

〉〉 � − ıπ2

8
√

3



�

N∑
{m,n�=p}

∞∑
k1,2,3=0

(
8bpm

2

)k1
(

8bpn

2

)k2
(

8bmn

2

)k3

×�(k1, k2, k3)(k1 + k2)(k1 + k2 − 1). (70)

Following the procedure described in the preceding section, we Fourier transform the real part
of equations (69) and (70) and obtain

〈〈
G(3)

p �=q(t)
〉〉 � π3

4
√

3

1

(t�)2

N∑
{m�=p,q}

∞∑
k1,2,3=0

(−8bpqt
2)k1(−8bpmt2)k2(−8bqmt2)k3

× �(k1, k2, k3)

�(2[k1 + k2 + k3] − 1)
(k1 + k2 − 1)(k1 + k3 − 1), (71)
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〈〈
G(3)

pp (t)
〉〉 � π3

8
√

3

1

(t�)2

N∑
{m,n�=p}

∞∑
k1,2,3=0

(−8bpmt2)k1(−8bpnt
2)k2(−8bmnt

2)k3

× �(k1, k2, k3)

�(2[k1 + k2 + k3] − 1)
(k1 + k2)(k1 + k2 − 1). (72)

The triple sums on the rhs of equations (71) and (72) cannot be reduced to a product of simple
sums. Therefore, the summation over k1,2,3 is not trivial [6]. To verify SuSyFT, we calculate
the contribution of three interacting matrices to the form factor (58). The answer looks more
compact if we at first symmetrize the expression for G(3)(t) with respect to k1,2,3 and then turn
to the ordered sum over three remaining indices:

K(3)(t) � 2√
3t2

1

N

N∑
{m>n>p}

∞∑
k1,2,3=0

(−2bpmt2)k1(−2bpnt
2)k2(−2bmnt

2)k3

× 4k1+k2+k3−1π�(k1, k2, k3)

�(2[k1 + k2 + k3] − 1)
(k1 + k2 + k3 − 1)(k1 + k2 + k3 − 3/2). (73)

Equation (73) coincides with the expression for K(3)(t) obtained by TVE [4].
We recall that all results of this section should be taken into account in the VE if

ω � B � 1 and the assumptions of the large-scale limit hold true, i.e., the sums over m

and n converge at the large spatial scales. This is the case, for instance, for the spectral
statistics of the critical PLBRMs where the relevant energy range is small ω < B� while
the characteristic spatial scale, which governs the two-level correlations in the framework of
2- and 3-matrix approximation, is large Xc ∼ B/ω � 1 [6].

5.3. Verification of the supersymmetric VE

Let us verify that the power series obtained for G(m),m � 2, really obey the estimate (27). If
we consider a term of the power series with given powers kj , integrate it over all R-variables
in the saddle-point approximation, scale S-variables by  and perform the summation over
all internal indices m, n, . . . �= p, q, then a simple power counting shows that the answer will
be proportional to

m

2

(
B


)2(k1+k2+···)

(cf equations (52), (53) and (69), (70)). Here m in the numerator and 2 in the denominator
result from the integration measure and from the factor RA, respectively. We can rewrite this
ratio as follows:

Bm−2

(
B


)2(k1+k2+···)−(m−2)

.

Obviously, having performed the summation over kj , the answer for G(m) can be written as a
product

G(m)(B,) = Bm−2Ḡ(m)

(


B

)
, (74)

which agrees with the estimate (27) and with formula (40).
We recall that the mth virial coefficient Ḡ(m) depends on the parameter /B, which can

take on an arbitrary value and is not assumed to be either small or large. The successive terms
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of the VE decrease with increasing m only if the absolute value of the virial coefficients is
bounded for the arbitrary ratio /B.

6. Conclusions

In the present work, we develop a supersymmetric field-theoretical description of a Gaussian
ensemble of the almost diagonal Hermitian random matrices. In this ensemble, the off-
diagonal matrix elements are assumed to be parametrically smaller than the diagonal ones:
Hii ∼ 1,Hij /Hii ∼ B � 1. We use the method of the supersymmetry to perform an
ensemble averaging. The standard route of the derivation of the supersymmetric nonlinear
σ -model cannot be taken in this case, since the diffusion approximation fails.

As an alternative to the supersymmetric σ -model, we derive a virial expansion (VE) in
the number of ‘interacting’ supermatrices, which is controlled by the small parameter B. Each
supermatrix can be related to a localized eigenstate of the diagonal part of RMs. Thus, the
supermatrix interaction describes the interaction of the localized wavefunctions via the (small)
off-diagonal elements of RMs. The principal idea of VE is similar to one used in VE based on
the Trotter formula [4]. Nevertheless, the supersymmetric VE is much more powerful since it
allows us to study not only the spectral correlations but also the correlation of wavefunctions
taken at different energies and in different space points.

The application of supersymmetric VE becomes especially efficient in a situation, when
(i) the relevant energy range is much smaller than the typical value of the diagonal elements
of RMs, ω � 1 and (ii) the large-scale approximation can be used, see section 4. In this
case, the massive degrees of freedom are integrated out by the saddle-point approximation.
This step is a counterpart of the saddle-point approximation used in the derivation of the
nonlinear σ -model. However, the saddle-point approximation in the VE requires only the
linear constraint: Str[Q] = 0.

One of the main results of the paper is the integral expression for the mth term of
VE, equations (38) and (39), which is governed by the interaction of m supermatrices. The
superintegrals in this formula completely circumvent a complicated combinatorial calculations
in the theory based on the Trotter formula. We note in passing that in this way we manage
to reduce the complicated problem of simultaneous colouring of edges of several graphs
(which is along standing problem in the statistical physics and the applied mathematics) to the
calculation of superintegrals. The superintegrals are calculated explicitly for the cases of 2-
and 3-matrix interaction with the help of the parameterization suggested in [20]. The results
containing in equations (52), (53), (60), (61) and (69), (70) have been obtained for the first
time. They have been derived for a generic ensemble of the almost diagonal RMs described
by equation (1) in the case of the unitary symmetry class. We note that our approach can be
easily generalized to the other symmetry classes.

The virial expansion generates a regular perturbation theory in powers of B for a variety
of the correlation functions in the different models of the almost diagonal RMs. Applications
to certain RMT models will be presented elsewhere. The critical ensemble of RMs [6] and
the Moshe–Neuberger–Shapiro model [15] with the orthogonal symmetry are two examples
of promising applications. The next important step would be derivation of non-perturbative
results directly from the supersymmetric action in the large-scale approximation. The non-
perturbative solutions could particularly shed light on the following problem: under what
circumstances an interaction between the localized states can lead to the criticality or to the
delocalization. This question is of fundamental importance in the theory of disordered [24]
and strongly correlated disordered systems [25].
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Appendix A. Parametrization of matrix Q in the retarded-advanced sector

Let us find a parameterization of the matrix Q defined as direct product of the supervector by
the conjugated supervector

Q ≡ � ⊗ �̄ =
(

�R ⊗ �
†
R �R ⊗ K�

†
A

�A ⊗ �
†
R �A ⊗ K�

†
A

)
, (A.1)

� =
(

�R

�A

)
, �R/A =

(
sR/A

χR/A

)
, K ≡

(−1 0
0 1

)
, (A.2)

where indices R and A are referring to the retarded and advanced sectors correspondingly.
Matrix QRR = �R ⊗�

†
R is the orthogonal projector on vector �R and can be diagonalized

by the unitary matrix UR:

QRR = URDRRU−1
R

UR =
(

1 − 1
2η∗

RηR −η∗
R

ηR 1 + 1
2η∗

RηR

)
,

U−1
R =

(
1 − 1

2η∗
RηR η∗

R

−ηR 1 + 1
2η∗

RηR

)
, DRR =

(
λ2

R 0
0 0

) (A.3)

where ηR = χR/sR, λ2
R = ‖�R‖2 = |sR|2 + χ∗

RχR . In a similar way block QAA can be
diagonalized by the pseudounitary matrix UA

(
U

†
AKUA = K

)
:

QAA = UADAAU−1
A

UA =
(

1 + 1
2η∗

AηA η∗
A

ηA 1 − 1
2η∗

AηA

)
, U−1

A =
(

1 + 1
2η∗

AηA −η∗
A

−ηA 1 − 1
2η∗

AηA

)
,

DAA =
(−λ2

A 0
0 0

) (A.4)

with ηA = χA/sA, λ2
A = −‖�A‖2 = |sA|2 − χ∗

AχA. Moreover, UR,UA diagonalize off-
diagonal blocks of Q:

QAR = UADARU−1
R QRA = URDRAU−1

A

DAR =
(

eiφλRλA 0
0 0

)
DRA =

(−e−iφλRλA 0
0 0

)
,

(A.5)

where eiφ = s∗
RsA/(|sRsA|). Thus, the matrix Q can be parameterized as follows:

Q = UDU−1

(A.6)

U =
(

UR 0
0 UA

)
, D =

(
DRR DRA

DAR DAA

)
=




λ2
R 0 −e−iφλRλA 0
0 0 0 0

eiφλRλA 0 −λ2
A 0

0 0 0 0


 .
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The measure in this parameterization can be easily found by calculating the Jacobian
(Berezenian) of the transformation (A.6) and is equal to

D{Q} = 2

π

dλR dλA

λRλA

dφ dη∗
R dηR dη∗

A dηA. (A.7)

Using equation (A.6) and taking into account the rotational symmetry of the supertrace, we
obtain

Str(Q) = R, Str(Q2) = R2; R ≡ λ2
R − λ2

A; (A.8)

Str(�Q) = S; S ≡ λ2
R + λ2

A; (A.9)

Str[QQ̃] = λ2
Rλ̃2

R(1 − α∗
RαR) + λ2

Aλ̃2
A(1 + α∗

AαA)

− 2 cos θλRλ̃RλAλ̃A

(
1 − 1

2α∗
RαR

)(
1 + 1

2α∗
AαA

); (A.10)

where αR/A ≡ ηR/A − η̃R/A; θ ≡ φ − φ̃ + �; � = i
2 (η̃∗

RηR − η∗
Rη̃R + η̃∗

AηA − η∗
Aη̃A) and tilde

marks the variables of the matrix Q̃. The last identity (A.10) follows from the well-known
property [27] of the matrices U :

U−1
R (η̃R)UR(ηR) = UR(ηR − η̃R) exp

(
1
2 (η̃∗

RηR − η∗
Rη̃R)

)
, (A.11)

U−1
A (η̃A)UA(ηA) = UA(ηA − η̃A) exp

(− 1
2 (η̃∗

AηA − η∗
Aη̃A)

)
. (A.12)

Appendix B. Parametrization of matrix Q in the retarded-retarded sector

In the retarded-retarded sector the matrix Q is defined similar to equation (A.1) but without
matrix K:

Q ≡ � ⊗ �† =
(

�R ⊗ �
†
R′ �R ⊗ �

†
R′

�R′ ⊗ �
†
R �R′ ⊗ �

†
R′

)
, (B.1)

� =
(

�R

�R′

)
, �R/R′ =

(
sR/R′

χR/R′

)
, (B.2)

where indices R and R′ are referring to the retarded sectors of two different Green’s functions.
As a result, one can diagonalize Q by transformation similar to equation (A.6):

Q = UDU−1

(B.3)

U =
(

UR 0
0 UR′

)
, D =

(
DRR DRR′

DR′R DR′R′

)
=




λ2
R 0 e−iφλRλR′ 0
0 0 0 0

eiφλRλR′ 0 λ2
R′ 0

0 0 0 0


 ,

where UR is defined in equation (A.3) and UR′ is obtained from UR by replacing subscript R
by R′ everywhere. All parameters appearing in (B.3) are defined in the same way as before:

ηR = χR

sR

, λ2
R = |sR|2 + χ∗

RχR, eiφ = s∗
RsR′

|sRsR′ | ,

ηR′ = χR′

sR′
, λ2

R′ = |sR′ |2 + χ∗
R′χR′ .

(B.4)
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The measure in this parameterization remains the same as in equation (A.7), while the
roles of variables R and S defined in equations (A.8) and (A.9) are interchanged now:

Str(Q) = S, Str(Q2) = S2; S ≡ λ2
R + λ2

R′ ; (B.5)

Str(�Q) = R; R ≡ λ2
R − λ2

R′ . (B.6)

Finally, the expression for Str[QQ̃] is again similar to equation (A.10):

Str[QQ̃] = λ2
Rλ̃2

R(1 − α∗
RαR) + λ2

R′ λ̃
2
R′(1 − α∗

R′αR′)

− 2 cos θλRλ̃RλR′ λ̃R′
(
1 − 1

2α∗
RαR

)(
1 − 1

2α∗
R′αR′

); (B.7)

where αR/R′ ≡ ηR/R′ − η̃R/R′ ; θ ≡ φ − φ̃ + �; � = i
2 (η̃∗

RηR − η∗
Rη̃R − η̃∗

R′ηR′ + η∗
R′ η̃R′).

Appendix C. Integrals for integer powers of sin(φ/2)

One needs the following formulae to average a product of the supertraces over the phases:

F(k) ≡ 1

2π

∫ 2π

0
sin2k

(
φ

2

)
dφ = �(k + 1/2)

π1/2�(k + 1)
; (C.1)

F(k1, k2, k3) ≡ 1

(2π)2

∫ ∫ 2π

0
sin2k1

(
φ1

2

)
sin2k2

(
φ2

2

)
sin2k3

(
φ1 − φ2

2

)
dφ1,2

= �(k1 + 1/2)

π1/2

�(k2 + 1/2)

π1/2

�(k3 + 1/2)

π1/2

× �(k1 + k2 + k3 + 1)

�(k1 + k2 + 1)�(k1 + k3 + 1)�(k2 + k3 + 1)
. (C.2)

We consider only integer powers of sines k and k1,2,3. Equation (C.1) can be found in standard
mathematical tables [28] while equation (C.2) can be proven by the induction over one of
the exponents, for example, over k3. Clearly, F(k, 0, 0) = F(k);F(k1, k2, 0) = F(k1)F(k2).
This constitutes the induction basis. To check the hypothesis for arbitrary k3, we assume
that F(k′

1, k
′
2, k3) is known for arbitrary k′

1,2 and find a relation between F(k1, k2, k3 + 1) and
F(k′

1, k
′
2, k3). Simple trigonometric transformations together with integrations by parts yield

F(k1, k2, k3 + 1) = F(k1 + 1, k2, k3) + F(k1, k2 + 1, k3) − 2F(k1 + 1, k2 + 1, k3)

+
2

(k1 + 1)(k2 + 1)
F (2)(k1 + 1, k2 + 1, k3), (C.3)

where

F (p)(k1, k2, k3) ≡ 1

(2π)2

∫ ∫ 2π

0

{
∂

p

φ1

[
sin2k1

(
φ1

2

)]}
sin2k2

(
φ2

2

)
sin2k3

(
φ1 − φ2

2

)
,

(C.4)

F (2)(k1, k2, k3) = k1

2
[(2k1 − 1)F(k1 − 1, k2, k3) − 2k1F(k1, k2, k3)]. (C.5)

Inserting (C.5) into (C.3), we get the relation

F(k1, k2, k3 + 1) = F(k1 + 1, k2, k3) +

(
1 +

2k1 + 1

k2 + 1

)
F(k1, k2 + 1, k3)

− 2

(
1 +

k1 + 1

k2 + 1

)
F(k1 + 1, k2 + 1, k3). (C.6)
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We substitute equation (C.2) into the right-hand side of equation (C.6) and derive the answer

F(k1, k2, k3 + 1) = �(k1 + 1/2)

π1/2

�(k2 + 1/2)

π1/2

�(k3 + 3/2)

π1/2

× �(k1 + k2 + k3 + 2)

�(k1 + k2 + 1)�(k1 + k3 + 2)�(k2 + k3 + 2)
, (C.7)

which satisfies equation (C.2). Thus, the induction over k3 is verified and equation (C.2) is
proven.

Using (C.2), (C.4) and (C.5), one can also show that

F (2n−1)(k1, k2, k3) = 0, n = 1, 2, . . . (C.8)

F (2)(k1, k2, k3) = F(k1, k2, k3)
k1k2k3

k1 + k2 + k3
, (C.9)

and

F (4)(k1, k2, k3) = k1

8

[
2(k1 − 1)(2k1 − 1)(2k1 − 3)F(k1 − 2, k2, k3)

− 4
(
4k3

1 − 6k2
1 + 4k1 − 1

)
F(k1 − 1, k2, k3) + 8k3

1F(k1, k2, k3)
]

= −F (2)(k1, k2, k3)

(
1 − (k1 − 1)(k2 − 1)(k3 − 1)

k1 + k2 + k3 − 1

)
. (C.10)

Appendix D. Averaging Strk[Q1Q2] and Strk1 [Q1Q2]Strk2 [Q1Q3]Strk3 [Q2Q3] over the
phases at R1, 2, 3 = 0 and integers powers k, k1, 2, 3

Let us average Sk
12 ≡ (Str[Q1Q2])k|R1,2=0 over the phases φ1,2:

Sk
12 =

[
S1S2

4

(
4 sin2

(
φ

2

)
+ 2(α∗

AαA − α∗
RαR) sin2

(
φ

2

)
+

cos(φ)

2
α∗

AαAα∗
RαR

)]k

; (D.1)

where k is integer; φ ≡ φ12 + �12;φ12 ≡ φ1 − φ2 and indices 1 and 2 mark the variables of
the matrices Q1 and Q2, respectively (see also notations in appendix A). We have to calculate
the following integral of the periodic function:

1

(2π)2

∫ ∫ 2π

0
dφ1,2Sk

12(φ1 − φ2 + �12) = 1

2π

∫ 2π

0
dφ12Sk

12(φ12). (D.2)

The nilpotents from �12 ≡ ı
2

(
�

(12)
R + �

(12)
A

)
,�

(12)
R/A = (ηR/A)∗2(ηR/A)1 − c.c. give no

contribution to the integral (D.2) due to the periodicity of the integrand.
Collecting the terms with the same powers of the Grassmann variables we find

Sk
12 =

(
S1S2

4

)k {
(2 sin(φ/2))2k +

k

2
(2 sin(φ/2))2k(α∗

AαA − α∗
RαR)

+
k

2

[
(2 sin(φ/2))2(k−1) − k

2
(2 sin(φ/2))2k

]
α∗

AαAα∗
RαR

}
. (D.3)

We insert equation (D.3) into the integral (D.2) and integrate over the phase φ12 using
equation (C.1):

1

2π

∫ 2π

0
dφ12Sk

12(φ12) =
(

S1S2

4

)k
�(2k − 1)

�(k − 1)�(k)

×
{

2k − 1

k(k − 1)
(2 + k(α∗

AαA − α∗
RαR)) − kα∗

AαAα∗
RαR

}
. (D.4)
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Note that the equality (D.3) can be rewritten in a more compact form:

Sk
12 = (S1S2)

k

{
(sin(φ/2))2k ekϒ12 − k

4
(sin(φ/2))2(k−1)ϒ2

12

}
; ϒ12 ≡ α∗

AαA − α∗
RαR

2
.

(D.5)

Unlike equation (D.2) written for the case of two linked supermatrices, the averaged
product Sk1

12S
k2
13S

k3
23 (which includes three linked supermatrices) depends on the nilpotents

coming from �(3) ≡ �12 + �13 + �23 and it can be expanded in the even powers of �(3):

1

(2π)3

∫ ∫ ∫ 2π

0
dφ1,2,3Sk1

12(φ1 − φ2 + �12)Sk2
13(φ1 − φ3 + �13)Sk3

23(φ2 − φ3 + �23)

= 1

(2π)2

∫ ∫ 2π

0
dφ dφ′Sk1

12(φ)Sk2
13(φ

′)Sk3
23(φ − φ′ + �(3)) (D.6)

=
3∑

p=0

(�(3))2p

(2p)!

[
1

(2π)2

∫ ∫ 2π

0
dφ dφ′Sk1

12(φ)Sk2
13(φ

′)∂2p

φ Sk3
23(φ − φ′)

]
. (D.7)

Here k1,2,3 are integer. There are no odd powers of �(3) due to the equality (C.8). For the
purpose of the present paper, we need only the terms with p = 0, 1, 2. The term ∝ (�(3))6

yields zero after multiplication by the factor RpAq (see equations (39) and (38)). Using
formula (D.5) and the results of appendix C, we find

(�(3))2p

(2p)!

[
1

(2π)2

∫ ∫ 2π

0
dφ dφ′ Sk1

12(φ)Sk2
13(φ

′)∂2p

φ Sk3
23(φ − φ′)

] ∣∣∣∣
p=2

= (S1S2)
k1(S1S3)

k2(S2S3)
k3

(�(3))4

4!
F (4)(k1, k2, k3); (D.8)

(�(3))2p

(2p)!

[
1

(2π)2

∫ ∫ 2π

0
dφ dφ′ Sk1

12(φ)Sk2
13(φ

′)∂2p

φ Sk3
23(φ − φ′)

] ∣∣∣∣
p=1

= (S1S2)
k1(S1S3)

k2(S2S3)
k3

(�(3))2

8

(
2F (2)(k1, k2, k3)(k1ϒ12 + k2ϒ13 + k3ϒ23)

2

− [
F (2)(k1 − 1, k2, k3)k1ϒ

2
12 + F (2)(k1, k2 − 1, k3)k2ϒ

2
13

+F (2)(k1, k2, k3 − 1)k3ϒ
2
23

]); (D.9)

(�(3))2p

(2p)!

[
1

(2π)2

∫ ∫ 2π

0
dφ dφ′ Sk1

12(φ)Sk2
13(φ

′)∂2p

φ Sk3
23(φ − φ′)

] ∣∣∣∣
p=0

= (S1S2)
k1(S1S3)

k2(S2S3)
k3(Part1 + Part2 + Part3); (D.10)

where

Part1 = F(k1, k2, k3)

4
(2k1k2k3ϒ1,2ϒ1,3ϒ2,3[k1ϒ1,2 + k2ϒ1,3 + k3ϒ2,3]

+ (k1ϒ1,2k2ϒ1,3)
2 + (k1ϒ1,2k3ϒ2,3)

2 + (k2ϒ1,3k3ϒ2,3)
2),

Part2 = −1

8

(
F(k1 − 1, k2, k3)k1ϒ

2
1,2(k2ϒ1,3 + k3ϒ2,3)

2 (D.11)

+F(k1, k2 − 1, k3)k2ϒ
2
1,3(k1ϒ1,2 + k3ϒ2,3)

2

+F(k1, k2, k3 − 1)k3ϒ
2
2,3(k1ϒ1,2 + k2ϒ1,3)

2
)
,
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Part3 = 1

16

(
F(k1 − 1, k2 − 1, k3)k1ϒ

2
1,2k2ϒ

2
1,3 + F(k1 − 1, k2, k3 − 1)k1ϒ

2
1,2k3ϒ

2
2,3

+F(k1, k2 − 1, k3 − 1)k2ϒ
2
1,3k3ϒ

2
2,3

)
. (D.12)

Appendix E. Results of the integration over the Grassmann variables

A direct integration over the large number of the Grassmann variables (12 Grassmanns in
the case of 3-matrix approximation) is technically trivial but very long and boring arithmetic
procedure. We have used the ‘Grassmann’ package of the ‘Maple’ system to do this step of
the calculations. Here, we present the results of this procedure which are necessary for the
calculations in the 3-matrix approximation∫

d{η∗
RηRη∗

AηA}p,q,m(η∗
RηR)p(η∗

AηA)q(�
(3))4 = 4!

24
; (E.1)

∫
d{η∗

RηRη∗
AηA}p,q,m(η∗

RηR)p(η∗
AηA)q(�

(3))2 ×




ϒ2
p,q

ϒ2
p,m

ϒ2
q,m


 = 0; (E.2)

∫
d{η∗

RηRη∗
AηA}p,q,m(η∗

RηR)p(η∗
AηA)q(�

(3))2 ×




ϒp,qϒq,m

ϒp,mϒm,q

ϒq,pϒp,m


 = 1

22
; (E.3)

∫
d{η∗

RηRη∗
AηA}p,q,m(η∗

RηR)p(η∗
AηA)q ×




ϒ2
p,qϒ

2
q,m

ϒ2
p,mϒ2

m,q

ϒ2
q,pϒ2

p,m


 = 1

22
; (E.4)

∫
d{η∗

RηRη∗
AηA}p,q,m(η∗

RηR)p(η∗
AηA)q ×




ϒ2
p,qϒq,mϒm,p

ϒp,qϒ
2
q,mϒm,p

ϒp,qϒq,mϒ2
m,p


 = 1

22
; (E.5)

see the definitions of the nilpotents in the previous appendix. Note that all three indices p, q

and m are different.
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